Demystifying the Narwhal’s Tusk

Male Narwhal, Photo Credit: Rex

Yet again drones have proved an invaluable instrument for new discoveries, especially when it comes to observing marine mammal behavior (see my past post: Whale Tales – Current Cetacean Communiqués).  The subject in question this time is the strange and elusive Narwhal.

Humans have valued Narwhal tusks for centuries, perceiving them as a cure for a number of medical ailments including epilepsy and poisoning, a practice which is still alive and well in Japan. Inuits still carry on the tradition of culling narwhal for subsistence and often used the tusks for carving. However, we have had little knowledge about the value of the tusk to the animal itself until recent years. More current research and observation suggests the tusks of narwhals function in multiple capacities.

The edited footage above conveniently highlights moments where individual narwhals stun passing cod with a solid tap of their tusk. It’s an interesting hunting method, but one that is rivaled by other examples in the marine world. Many species immobilize their prey; some, like sailfish, use similar techniques, while others may use contrasting tools. Electric Rays and eels shock their quarry, while pistol shrimp use high-speed cavitation bubbles to daze their targets. Archer fish knock their dinner out of overlying branches by spitting a stream of water at them.

The purpose of the narwhal’s tusk likely doesn’t stop at clubbing unwitting prey. The absence of an enamel coating on their tusk supports the idea that these animals might be using them in a sensory capacity, allowing the specialized tooth to come into contact with surrounding water masses to detect environmental changes such as salinity and temperature, as well as chemical cues in the water associated with food and mates. Pairing this awareness of their surroundings with highly directional echolocation also allows them to find sometime slim openings in Arctic ice coverage where they can surface and breath as needed.

 However, these animals may still suffer catastrophic events living in the extremes they do. Pods of narwhals occasionally suffer entrapments when rapidly shifting weather conditions cause unexpected freezing over potential air holes leading to open water. Kristin Laidre, a researcher at University of Washington’s Polar Science Center, noticed the frequency and timing of those events may be changing with recent shifts in Arctic climate. This, paired with a variety of additional stressors to the whales’ habitat, is the focus of one her current research projects examining the behavioral ecology of narwhals in a changing Arctic. She and other researchers have tagged the animals on multiple occasions in Canada’s Baffin Bay to track their movement, the depth of their dives, and associated water temperatures. As it turns out the temperature data has proved useful to other scientists interested in climatology data. Laidre is soon hoping to once again utilize the oceanographic power of narwhals, this time in Greenland.

Speck of Science 2/7/17 – Shark Find in Belize

FIU researcher Demian Chapman and a possible new species of Bonnethead. Source: FIU 

A new species of Bonnethead has been described in Belize by FIU researcher Demian Chapman, thus the scenario of a single widespread species in that region now becomes the story of one or more species with overlapping ranges. The discovery was made after analyzing a snippet of the shark’s genome.

DNA analysis has allowed a much more nuanced perspective on species-level differences beyond the physical characteristics that were once the focus of classically-trained taxonomists. Now scientists are able to classify variance on a genetic level and have refined the technique. Now researchers use a method called DNA barcoding, which needs to examine just a small portion of an animal’s genomic sequence, and is often compared to scanning groceries at your supermarket’s checkout line. Large-scale efforts to catalog and archive these genetic identifiers, such as Barcode of Life, make this data widely accessible.


In addition, this finding was part of a larger initiative, called Finprint, focused on filling in data gaps concerning sharks, fins, and rays – all of which constitute a group of cartilaginous fish known as elasmobranchs. Finprint uses baited remote underwater video (BRUV) as one of their primary tools for studying these creatures. Much of their work appears to be focused on their spatial distribution, identifying regions that could lead to conflict with other uses such as fishing or areas that can be marked as candidates for protection.

 

The freeloading lifestyle of fresh water mussels

slide1120copy
Conglutinates of the Ouachita kidneyshell – Chris Barnhart

I study oystery things. In my little myopic scientific snowglobe, I know a few things about shellfish, and I know a few more things about oysters. Then I know the most things about oyster filtration. So there’s still plenty of room for surprise.

This very thing happened this year during a local American Fisheries Society (AFS) meeting where I heard a talk about freshwater mussels. Probably because I always seem to be mucking about in briny water rather than its fresher counterpart, I was rather taken aback learning that many of these species have parasitic larval stages.

After females collect sperm that males eject externally, they fertilize their eggs and stow them in their gills where they develop into a minuscule larval stage called glochidia. These juvenile mussels cannot fully develop however until they somehow reach a host fish. They will encyst themselves into the host’s tissue where they will stay until more fully formed, at which point they will drop off and settle on the river floor. The host fish has graciously and perhaps unknowingly provided the small creature with protection and dispersal.

1333133491

The strangest detail of this whole process seems to be the intricate tactics mussels have developed to get their little parasitic spawn into hosts. Some species concentrate their glochidia into structures called conglutinates that they then release into the water. Many resemble prey items attractive to fish like in the video  and picture below:

Others, like mamas in the Lampsilis family keep their little ones closer to them while dangling parts of their mantle tissue to the same affect at the conglutinates described above.

lamp_ornata_coosa
Lampsilis’ display attracts host fish – Paul L. Freeman, Nature Conservancy

For most species of freshwater mussel, the choice of host fish seems to be relatively specific. In some cases, the species of host has yet to be discovered, which provides fertile ground for research into the topic such as the work that Florida Wildlife Commission’s Blackwater Research and Development Center in Holt, Florida has done.

As with other symbiotic relationships within nature, freshwater mussels are incredibly dependent on the health of their host and the system around them. This has further increased the need for continued research and conservation, and in some instances agencies and institutions have fostered cultivation and propagation efforts.

Speck of Science 8/17/16 – The Greenland Shark abides

6376473_orig
Source: Ocean Treasures Memorial Library

Several news outlets this week have justifiably made a big deal about the Greenland Shark. Recent research suggests these lumbering giants are now the record holder for the longest lived vertebrates we are aware of. This knocks the Bowhead whale from first place, whose age-determination story is fascinating in its own right, bolstered by the presence of an antique eskimo harpoon point.

Often sharks have been aged through examining growth bands present in vertebrae, however Greenland sharks have softer vertebrae that make this challenging. Additionally, due to challenges in reading these rings as sharks age, as well as possible disconnects between growth rate and age, radiocarbon dating has been joining the toolbox for determining fish longevity.  This study used the method with the sharks’ eye lenses.

greenland_shark_parasite

These sharks may take up to 150 years to reach sexual maturity, making their population vulnerable if too many individuals are culled before reproducing. They are also bizarrely prone to parasitism by a strangely-elongate copepod (most look more shrimp or lobster-like) that attaches to their eyeball and ultimately causes a march towards blindness. Only 1% of the 1500 sharks in a study concerning infection rates were parasite-free. 85% are afflicted in both eyes. However, due to their reliance on a keen sense of smell, rather than sight, for hunting, it has been suggested that the sharks may actually benefit from the copepod acting as small visible lures that interest nearby prey. However, Dr. George Benz of Middle Tennessee State University with expertise in shark and ray parasites, doubts this theory, instead favoring the idea that Greenland sharks may instead be ambush hunters, taking their targets instead through the element of surprise.

Speck of Science 8/15/16 – Nat Geo Writes About Pooping Comb Jellies

maxresdefault
Still from Ryan M. Bolton 2016 video: https://www.youtube.com/watch?v=weeFO6kLu5o

Lest you think National Geographic is losing their edge, the reason why ctenophores (the phylum to which comb jellies belong) defecating is a big deal is because it was thought this group of creatures had a single opening for both feeding and excreting. University of Miami researcher William Brown debuted videos at the March 2016 Ctenopolooza gathering at the Whitney Lab in St. Augustine (where I’ve done much of my own dissertation field and lab work) that prove otherwise. One of the peculiar videos is featured partway through Nat Geo’s article here. Science writes about the find as well.

One of the most interesting aspects of this find is questions regarding the evolutionary history of gut development. It was thought to be a pretty straight forward pathway from one opening to two. However, because comb jellies evolved before other organisms that still have a single opening, such as sponges, things are looking slightly more interesting. Perhaps ctenophores branched off, and smartly evolved a more complex gut tract independent of these organisms. Or, perhaps some of these single-orificed organisms started with two but lost one over time – similar to the story of some marine mammals that long ago left the sea to become land-dwellers, only to ultimately return again.

 

 

The Science PhD Experience: My Life is a Series of Home Improvement Stores

OLYMPUS DIGITAL CAMERA
Source: Wikimedia Commons

Never when I signed up for this whole PhD “thing”, did I think that further down along the line I would wander down the aisles of countless formless and faceless Home Depots and Lowes, familiarizing myself with PVC epoxies, pipe cutters, types of quick-pour concrete, and erratically color-coded lengths of rebar. While I am in the very last throes of the natural science component of my dissertation, for stretches within the last year, nary a week would pass without at least one, if not several, trips searching for the miscellanea one needs to make a bare-bones scientific project happen.

My method for estimating oyster filtration rates required the use of sediment traps (see my post about it here) constructed out of buckets and netting. However, the studies that used them prior and upon which I based my design, had employed them in very different settings. My traps had to withstand dynamic ocean conditions, tidal cycles, and the interest of the errant passerby. So thus began the nail-biting process of iterative design. What type of buckets to use to avoid re-suspending sediment? What kind of netting across the mouth? How to affix them to reef? How to weight them so they wouldn’t float away during the first high tide?

Practice run after practice run unfolded as I tried various proto-types. Scuba weights affixed to the mouth of buckets using hose clamps. Testing ways to keep everything in one place using ground anchors, thin lengths of PVC, rebar. Phone calls from nearby good Samaritans who had retrieved my runaway equipment (a PSA if there ever was one for labeling your gear!). A slick (if not utterly lo-fi) double-nested bucket design weighted down with rounds of concrete emerged out the mixture of mishaps and successes.  I then did it all again and tapped into the same recurrent type of process when creating a seawater flow-through system for oyster filtration lab trials.

Mosaic.png

All the while, I was running to every hardware store in town, looking for materials of the right shape, weight, and construction for whatever small application I had in mind. Many questions directed towards employees started with “This is going to sound strange, but…”. Eyebrows were raised when I bought 30 of something generally purchased in increments of one or two – “…Doing a lot of yard work this weekend?”  I recall poorly relaying the idea of my experimental sediment traps meant to measure the amount of oyster biodeposits produced during my experiment, and the amusing follow-up question: “Are you trying to keep the oysters from getting away?”

Many questions directed towards employees started with “This is going to sound strange, but…”.

Additionally I had the help of a marine lab machine shop to drill, cut, and sand. I learned how to estimate which equipment I needed for which job. I also had the opportunity to watch those inclined towards clever design and ask plenty of questions. Is there enough water pressure to do that? How do I get the flow to be more laminar? How do I keep this from leaking?

It’s a cultivated skill set, one which rewards those who tinkered with lego and kinex as a kid. Rarely are we told as marine biologists, fisheries scientists, or field ecologists, that we will draw so heavily upon what amounts to being back-of-the-envelope engineers.It’s also a continued argument for the inclusion of the “T” (technology) and the “E” (engineering) part of STEM training that is often desired on the job, but may make scant appearance in a scientist’s formal education.

Most of us instead gain experience through more informal avenues, as the best teacher is often necessity. Also there is no better practice than to constantly build, err, and deconstruct, all while slowly incorporating new fixes and experiencing the fog of confusion out of which comes little sparks of revelation. The act of literally building our science from the ground up is one of ultimate creativity, funneling in threads of right-brain function, and helping us shape solutions in response to whatever demands our research may make of us.

Note: This content has been cross-posted on the blog “From Reef to Rivers: Florida’s Fisheries Science Blog

Speck of Science – 4/19/16 – March of the Crabs

christmas-island-red-crab
Source: Animal Planet

Mass migrations fascinate me – massive swarms of creatures on robotic treks to satisfy deep-seated needs for resources – nature’s automatons reaching for food, for mates, for brighter skies. One of the earliest that captured my attention is expressed in this Animal Planet video documenting the movement of red crabs on Christmas Island:

http://www.animalplanet.com/tv-shows/wild-kingdom/videos/christmas-island-red-crabs/

(Note at 1:40, crustaceans seem to be playing “frogger” while obliviously scuttling across roads and railroad tracks. Not the unexpected result of the clash between crab and human.)

A gif of the oceanic equivalent has made a recent appearance online, showing an endless carpet of sandy colored scuttlers (they were in fact red,  or “tuna,” crabs who appeared that way as they stirred up a the sediment on the sea floor). However, this article sheds more light on the unusual event captured by a manned submersible exploring Hannibal Bank off of Panama (fitting name for the location of a slightly unnerving and intriguing event to occur? ). The following video comes from Woods Hole Oceanographic Institut and features scientist Jesús Pineda explaining the details around recording the migration: